Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli
نویسندگان
چکیده
BACKGROUND While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. RESULTS E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. CONCLUSIONS The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions.
منابع مشابه
Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase
BACKGROUND Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-t...
متن کاملEngineering Escherichia coli for Microbial Production of Butanone.
To expand the chemical and molecular diversity of biotransformation using whole-cell biocatalysts, we genetically engineered a pathway in Escherichia coli for heterologous production of butanone, an important commodity ketone. First, a 1-propanol-producing E. coli host strain with its sleeping beauty mutase (Sbm) operon being activated was used to increase the pool of propionyl-coenzyme A (prop...
متن کاملConstruction of a novel anaerobic pathway in Escherichia coli for propionate production
BACKGROUND Propionate is widely used as an important preservative and important chemical intermediate for synthesis of cellulose fibers, herbicides, perfumes and pharmaceuticals. Biosynthetic propionate has mainly been produced by Propionibacterium, which has various limitations for industrial application. RESULTS In this study, we engineered E. coli by combining reduced TCA cycle with the na...
متن کاملEngineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources
While poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] is a biodegradable commodity plastic with broad applications, its microbial synthesis is hindered by high production costs primarily associated with the supplementation of related carbon substrates (e.g. propionate or valerate). Here we report construction of engineered Escherichia coli strains for direct synthesis of P(3HB-co-3...
متن کاملDehydratase mediated 1-propanol production in metabolically engineered Escherichia coli
BACKGROUND With the increasing consumption of fossil fuels, the question of meeting the global energy demand is of great importance in the near future. As an effective solution, production of higher alcohols from renewable sources by microorganisms has been proposed to address both energy crisis and environmental concerns. Higher alcohols contain more than two carbon atoms and have better physi...
متن کامل